COMPLEX INVESTIGATION OF THE THERMAL AND ELECTROPHYSICAL PROPERTIES OF REFRACTORY OXIDES IN THE LIQUID AND SOLID PHASES*

> E. E. Shpil'rain, D. N. Kagan, L. S. Barkhatov, L. I. Zhmakin, and V. V. Koroleva

UDC 536.7.722:669.154

Results of an experimental investigation of the enthalpy and specific electrical conductivity of aluminum and scandium oxides in the 1570-3100°K range and also of the heats of fusion of these oxides are presented.

The thermophysical and electrophysical properties of aluminum and scandium oxides were investigated in specimens not less pure than 99.9%. Heating was performed in high-temperature resistance furnaces with tungsten heaters in a highly pure argon atmosphere or in a vacuum. The temperature was measured by optical pyrometers of ÉOP-66 type. The length-to-diameter ratio of the blackbody model was not less than 10 in all cases. A correction for optical system absorption was introduced by computation on the basis of a preliminary calibration.

According to IUPAC data [1], the recommended value of the melting point of Al_2O_3 is 2323 ± 4°K. On the basis of an analysis of the data in [2-6], we take the melting point of scandium oxide at 2762 ± 20°K.

The enthalpy of the aluminum and scandium oxides was measured by the mixing method by using a calorimeter with an evaporating fluid. The quantity of heat introduced by the ampule with the substance being investigated into the calorimeter was determined by the increase in the weight of the evaporating calorimetric fluid during the calorimetrization.

Six molybdenum and four tungsten ampules of 18-20-mm diameter and 60-65-mm height were used to investigate the aluminum oxide, and two tungsten ampules of analogous dimensions were used for the scandium oxides. All the ampules were sealed. Welding was performed by electron-beam apparatus in a high vacuum; hence, the substance being investigated was under the pressure of its own vapors.

Data on the enthalpy and integrated emissivity of molbydenum were taken from [7,8]. Jointly processed results [9] and data in good agreement [10,11] were used for the tungsten enthalpy. Information about the emissivity of tungsten was borrowed from [12].

The results of an experimental investigation of the enthalpy of aluminum oxide in the 2000-3100°K temperature range are presented in Table 1. They permit the determination of the heat of fusion of Al_2O_3 , equal to 25.7 ± 1.2 kcal/mole for $T_m = 2323 \pm 4$ °K. Also present in Table 1 are data on the enthalpy of scandium oxide in the solid and liquid states. The heat of fusion of Sc_2O_3 turned out to equal 24 ± 2 kcal/mole for $T_m = 2762 \pm 20$ °K.

To reduce the enthalpy results to 298.15°K, a correction $H_{373.15} - H_{298.15}$ was introduced according to data on the low-temperature enthalpy of the aluminum [13] and scandium [14] oxides. The confidence interval for the maximal relative error in determining the enthalpy is 0.8-1.6%, and for the enthalpy of scandium oxide was 1.1-1.8%.

Data obtained on the enthalpy of solid phase Al_2O_3 agree well with the results in [15-18]. It should be noted that the data are somewhat exaggerated in a narrow premelting region in [18]. The reason for this phenomenon should be sought in the inadequate purity of

*This issue of the journal contains papers presented to the Organizing Committee of the Sixth All-Union Conference on Thermophysical Properties of Substances. Information about the conference was published in Inzh.-Fiz. Zh., 36, No. 5 (1979).

High-Temperature Institute, Academy of Sciences of the USSR, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 38, No. 4, pp. 581-586, April, 1980. Original article submitted June 28, 1979.

Aluminum oxides: $M_{Al_{\bullet}O_{\bullet}} = 101,96;$		Scandium oxides: $M_{Sc_2O_3} = 137,91;$	
$T_{\rm m} = 2323 \pm 4^{\circ} {\rm K}$		$T_{\rm m} = 27.62 \pm 20^{\circ} {\rm K}$	
H _T -H _{298,15} kcal/ mole	<i>T</i> , °K	$H_T - H_{298,15}$, kcal/mole mole	
Solid phase Solid		Solid phase	
52102 55018 55028 56955 57823 57667 60852	1570 1590 1774 1972 2137 2332 2346 2368	38710 39396 46697 50344 56127 61432 62119 62333	
Liquid		65034 66978	
86530 87100 87832 89030 90035 90130 90678	2484 2585 2608 2628 2699 2748 2759	68051 73965 76149 76652 80617 84865 86387	
91045 91130	Liquid		
91633 93432 94330 96033 104988 109530 111310 118030	2773 2791 2793 2820 2842 2867 2886 2886	113737 112245 108934 115339 112484 119253 116293 118798	
	$\begin{array}{c c} H_T - H_{298,15} & \mbox{kcal/} \\ H_T - H_{298,15} & \mbox{mole} \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

TABLE 1. Enthalpy of Aluminum and Scandium Oxides

the oxide being investigated: under operating conditions with unsealed ampules, the use of a graphite heater afforded a possibility of graphitization of the aluminum oxide as well as the insertion of other contaminants. An indirect verification of this circumstance is the fact that the melting point quantity obtained in [18] for Al_2O_3 turned out to be below the corresponding results of other researchers. At temperatures above the melting point of the aluminum oxide, the object for comparison can only be papers [18,19] in a quite limited temperature range (to 2740°K [19]). Because of the reasons considered earlier, the results of [18] differ somewhat from the data of [19], which are in good agreement with those presented in Table 1, in its turn.

All the above also refers to the heat of fusion of Al_2O_3 , which is 28 ± 0.55 [18] and 25.8 ± 1.3 kcal/mole [19].

We know of just two papers where the enthalpy of scandium oxide has been investigated [20,21] to 1610 and 1800°K, respectively. Our data are in good agreement with [20,21] in this temperature range. There is no information about the enthalpy of Sc_2O_3 above 1800°K in the literature.

The specific electrical conductivity of the aluminum and scandium oxides in the liquid and solid phases was measured by a contact method by using two-electrode coaxial cells. One of the electrodes of these cells was a cylindrical crucible and the other was a coaxially disposed small-diameter rod capable of being moved along the crucible axis. Tungsten cells with the following parameters were used to measure the Sc_2O_3 electrical conductivity: crucible inner diameter 20 mm, crucible height 60-65 mm, central electrode diameter 3 mm.

The electrical conductivity of the Al_2O_3 was determined in both tungsten and molybdenum cells, where the latter had different geometrical characteristics (30-mm crucible diameter, 1.2-mm central electrode), and were used only to 2600 °K. The mass of the oxides in the cell crucibles was 40-90 g. All the measurements were performed by a resonance method using audio-frequency alternating current. The experimental data presented below for the electrical conductivity of Al_2O_3 and Sc_2O_3 were obtained at a 5-kHz resonance frequency; a change in resonance frequency between 1-10 kHz limits did not affect the results of experiments.

Data on the specific electrical conductivity of liquid Al₂O₃ and Sc₂O₃, obtained at

Aluminum oxides		Scandium oxides		
т, °к	*. $\Omega^{-1} \cdot m^{-1}$	т, °К	\approx , $\Omega^{-1} \cdot m^{-1}$	
Solid phase		Solid phase		
2059 2102 2161 2214 2240 2245 2256 2268	$2,21 \cdot 10^{-2}$ $3,99 \cdot 10^{-2}$ $7,07 \cdot 10^{-2}$ $8,45 \cdot 10^{-2}$ $1,32 \cdot 10^{-1}$ $1,48 \cdot 10^{-1}$ $1,37 \cdot 10^{-1}$ $1,33 \cdot 10^{-1}$	2361 2449 2518 2583 2615 2678 2751	2,07 2,65 4,11 6,05 10,70 12,70 18,60	
Liquid		Liquid		
2342 2383 2408 2465 2512 2537 2554 2559 2579 2598 2681 2697 2747 2835 2891 2935 2991 3008	$\begin{array}{c} 269\\ 312\\ 336\\ 406\\ 477\\ 502\\ 560\\ 545\\ 603\\ 620\\ 742\\ 769\\ 861\\ 1013\\ 1075\\ 1152\\ 1251\\ 1266\end{array}$	2782 2826 2840 2854 2867 2895 2909 2932 2953 2982 3014 3056	1670 1796 1815 1847 1818 1805 1924 1914 1942 1961 2020 2088	

TABLE 2. Specific Electrical Conductivity of Aluminum and Scandium Oxides

temperatures to 3000 and 3100°K, respectively, are presented in Table 2. It should be noted that the growth in the electrical conductivity of the melts with temperature, as well as the noticeable polarization effect at the cell electrodes which was detected in dc measurements, indicate indirectly the primarily ionic nature of the conductivity of these oxides in the liquid phase.

The error in measuring the electrical conductivity of the Al_2O_3 and Sc_2O_3 melts is estimated at 4-6% for a 95% confidence.

A comparison of the experimental data on the electrical conductivity of fused Al_2O_3 obtained in this paper with those published earlier [22-26] exhibits a significant discrepancy between the data of different authors. The possible causes for this discrepancy are examined in [27]. The results of our paper are in good agreement just with the data of Fay [23] at 2400 °K. There is no information about the specific electrical conductivity of a scandium oxide melt in the literature.

The specific electrical conductivity of aluminum and scandium oxides in the solid phase is measured from the melting point to 2000 °K (Al₂O₃) and 2300 °K (Sc₂O₃). To this end, the central electrode of the cell was dropped a definite depth into the oxide melt, and after its solidification the cell resistivity was measured as a function of the temperature. Corrections were introduced for the leakage of current through the gas phase and for diminution of the volume of oxide in the crucible during melt solidification at the melting point. The error in measurement was 15-20%.

The results of the present paper on the specific electrical conductivity of Al_2O_3 in the solid phase agree satisfactorily with the experimental data of other authors obtained on polycrystalline oxide specimens in a neutral medium and published in [28] and in [29]. However, it should be noted that the electrical conductivity of Al_2O_3 in these papers was investigated to temperatures not exceeding 2030°K [28] and 2100°K [29].

Comparing our data on the electrical conductivity of Sc_2O_3 with those available in the literature is difficult since they are obtained only to $1800^{\circ}K$ [30,31]. The ratio between

the electrical conductivities of the liquid and solid phases of the aluminum and scandium oxides at the melting points is $1.04 \cdot 10^3$ for Al₂O₃ and $0.90 \cdot 10^2$ for Sc₂O₃.

NOTATION

 T_m , melting point of the oxide; HT, enthalpy of the oxide at the temperature T, °K; M, molecular weight of the oxide; \varkappa , specific electrical conductivity.

LITERATURE CITED

- 1. Rapport IUPAC, Rev. Int.-Hautes Temp. Ref., 7, No. 1, 5-6 (1970).
- C. Barta, F. Petru, and B. Hajek, "Über die Darstellung des Eirkristalls von Scandiumoxyd," Naturwissenschaften, 45, No. 1, 36-38 (1958).
- 3. N. A. Toropov and V. A. Vasil'eva, "Phase diagram of the binary system scandium oxide -silica," Zh. Neorg. Khim., 7, No. 8, 1938-1945 (1962).
- S. J. Schneider and J. L. Waring, "Phase equilibrium relations in the Sc₂O₃-Ga₂O₃ system," J. Res. Nat. Bur. Stand., <u>67A</u>, No. 1, 19-25 (1963).
 W. Trzebiatowski and R. Horyn, "Phase equilibria in UO₂-Sc₂O₃ and ThO₂-Sc₂O₃ systems,"
- W. Trzebiatowski and R. Horyn, "Phase equilibria in UO₂-Sc₂O₃ and ThO₂-Sc₂O₃ systems," Bull. Acad. Polon. Sci., Ser. Chim., <u>13</u>, No. 5, 303-309 (1965).
 J. P. Coutures, R. Verges, and M. Foex, "Valeurs compares des temperatures de solidi-
- J. P. Coutures, R. Verges, and M. Foex, "Valeurs comparées des temperatures de solidification des différents sesquioxydes de terres rares; l'influence de l'atmosphere," Rev. Int. Hautes Temp. Ref., 12, No. 2, 181-185 (1975).
- V. A. Petrov and V. Ya. Chekhovskoi, "Experimental measurement of the enthalpy of molybdenum under ultimately high temperatures," Teplofiz. Vys. Temp., <u>6</u>, No. 4, 752-753 (1968).
- V. A. Petrov, V. Ya. Chekhovskoi, and A. E. Sheindlin, "Experimental determination of the integrated emissivity of metals and alloys at high temperatures," Teplofiz. Vys. Temp., 1, No. 1, 24-29 (1963).
- 9. E. E. Shpil'rain, D. N. Kagan, and L. S. Barkhatov, "Thermodynamic properties of the condensed phase of alumina near the melting point," High Temp.-High Pressures, <u>4</u>, No. 6, 605-609 (1972).
- L. Leibowitz, M. C. Chasanov, and W. L. Mishler, "The enthalpy of solid tungsten from 2800°K to its melting point," Trans. Met. Soc. AIME, <u>245</u>, No. 8, 961-984 (1969).
- V. A. Kirillin, A. E. Sheindlin, V. Ya. Chekhovskoi, and V. A. Petrov, "Experimental investigation of the enthalpy of tungsten in the 2400-2820°C temperature range," Dokl. Akad. Nauk SSSR, 144, No. 2, 390-391 (1962).
- 12. K. J. Smitells, Tungsten [Russian translation], Metallurgiya, Moscow (1958).
- D. C. Ginnings and G. T. Furukawa, "Heat capacity standards for the range 14-1200°K," J. Am. Chem. Soc., <u>75</u>, No. 5, 522-527 (1953).
- K. K. Kelley, "Contribution to the data on theoretical metallurgy: XIII High-temperature heat content, heat capacity, and entropy data in inorganic compounds," U.S. Bur. Mines Bull., No. 584, 1-232 (1960).
- A. Ferrier and M. Olette, "Contribution à l'etude de l'enthalpie du corindin à temperature elevée," C. R., <u>254</u>, No. 25, 4293-4295 (1960).
 R. I. Efremova and É. V. Matizen, "Measurement of corundum enthalpy at high tempera-
- R. I. Efremova and É. V. Matizen, "Measurement of corundum enthalpy at high temperatures," Fifth All-Union Conf. on Calorimetry (Expanded Reports) [in Russian], Moscow State Univ. (1971), pp. 344-348.
- V. A. Kirillin, A. E. Sheindlin, and V. Ya. Chekhovskoi, "Experimental determination of the enthalpy of corundum (Al₂O₃) at temperatures from 500-2000°C," Inzh.-Fiz. Zh., <u>4</u>, No. 2, 3-17 (1961).
- P. B. Kantor, L. S. Lazareva, V. V. Kandyba, and E. N. Fomichev, "Experimental measurements of the enthalpy, temperature and heat of fusion of α-Al₂O₃ from 1200-2500°K," Ukr. Fiz. Zh., 7, No. 2, 205-211 (1962).
- 19. A. E. Sheindlin, V. Ya. Chekhovskoi, and V. A. Petrov, "Enthalpy and specific heat of a corundum melt to temperatures on the order of 2800°K," Inzh.-Fiz. Zh, 7, No. 5, 63-65 (1964).
- 20. D. Sh. Tsagareishvili, T. S. Yashvili, and G. G. Gvelesiani, "Enthalpy and specific heat of the scandium sesquioxide at high temperatures," Soobshch. Akad. Nauk Gruz. SSR, 49, No. 1, 175-180 (1968).
- L. B. Pankratz and K. K. Kelley, "Thermodynamic data for gallium and scandium sesquioxides," U.S. Bur. Mines Report Invest., No. 6198, 1-7 (1963).

- 22. A. E. Van Arkel, E. A. Flood, and N. F. H. Bright, "The electrical conductivity of molten oxides," Can. J. Chem., 31, No. 11, 1009-1019 (1953).
- H. Fay, "The electrical conductivity of liquid Al₂O₃ (molten corundum and ruby)," J. Phys. Chem., 70, No. 3, 890-893 (1966).
- 24. V. P. Elyutin, B. S. Mitin, and Yu. A. Nagibin, "Electrical conductivity of liquid aluminum oxide," Izv. Akad. Nauk SSSR, Neorg. Mater., 7, No. 5, 880-881 (1971).
- 25. V. I. Aleksandrov, V. V. Osiko, and V. M. Tatarintsev, "Electrical conductivity of Al₂O₃ in the melted state," Izv. Akad. Nauk SSSR, Neorg. Mater., 8, No. 5, 956-957 (1972).
- 26. Yu. A. Polonskii and V. A. Lapin, "Electrical resistivity of aluminum oxide in the solid and liquid states (1500-2300°C)," Fourth All-Union Congress on High-Temperature Chemistry of Silicates and Oxides (Abstracts of Reports) [in Russian], VIO, Leningrad (1974), pp. 40-41.
- É. É. Shpil'rain, D. N. Kagan, L. S. Barkhatov, and L. I. Zhmakin, "Experimental investigation of the specific electrical conductivity of liquid aluminum oxide at temperatures to 3000°K," Teplofiz. Vys. Temp., <u>14</u>, No. 5, 948-952 (1976).
 J. Pappies and W. D. Kingery, "Electrical properties of single-crystal and polycrystal-
- J. Pappies and W. D. Kingery, "Electrical properties of single-crystal and polycrystalline alumina at high temperatures," J. Am. Ceram. Soc., 44, No. 9, 459-464 (1961).
- 29. R. J. Brook, J. Yee, and F. A. Kröger, "Electrochemical cells and electrical conduction of pure and doped Al₂O₃," J. Am. Ceram. Soc., 54, No. 9, 444-451 (1971).
- 30. Per. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, Wiley (1972).
- Z. S. Volchenkov and V. M. Nedopekin, "Investigation of the electrical conductivity of Sc₂O₃," Izv. Akad. Nauk SSSR, Neorg. Mater., 11, No. 8, 1412-1415 (1975).

THERMOPHYSICAL PROPERTIES OF SCANDIUM-TITANIUM ALLOYS

Zh. M. Tomilo

UDC 536.631+537.311.31

We present the results of measurements of the specific heat capacity of scandium-titanium alloys in the 4.2-12°K range and their electrical resistivity in the 4.2-300°K range.

Since the use of scandium as a structural material (melting point 1812°K, density 3 g/cm³, chemical and corrosion stability) [1,2] is limited today (because of its high cost), we must investigate the properties of alloys of scandium with other metals. Thus, e.g., scandium-titanium alloys have higher strength and plasticity than metallic scandium at room temperature, and even at higher temperatures [2].

The literature supplies no information on the heat capacity of scandium-titanium alloys and only very limited information concerning their electrical resistivity [2].

In order to obtain scandium-titanium alloys, we used scandium containing 0.6% 0, 0.06% H, 0.025% Cu, <0.004% Ca, 0.035% Fe, and 0.002% Mo (by mass), with an electrical resistivity at 300° K that was twice the electrical resistivity at 4.2° K. The titanium contained 0.006% Fe, 0.01% C, 0.0025% Ni, <0.01% Mg, <0.005% Mn, <0.01% Si, <0.02% Al, and <0.01% Cr by mass. The alloys were obtained by the method of electric-arc melting with a permanent electrode in an argon atmosphere.

The low-temperature heat capacity of Sc, Ti, and Sc—Ti alloys was measured in an adiabatic calorimeter by a step method [3,4]. The sensor used was a gold-copper thermocouple (the gold containing an added 0.035 at. % iron); the thermocouple was calibrated by means of the VNIIFTRI's germanium resistance thermometer. The mean deviation of the experimental points from the smoothed curve was $\pm 4\%$ over the entire range investigated (4.2-12°K), which did not exceed the error in the measurement of the heat capacity. The results of the heatcapacity measurements are shown in Table 1.

Institute of Solid-State and Semiconductor Physics, Academy of Sciences of the Belorussian SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 38, No. 4, pp. 587-592, April, 1980. Original article submitted June 28, 1979.